Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664755

RESUMO

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Assuntos
Antioxidantes , Endometriose , Células da Granulosa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Endometriose/metabolismo , Endometriose/tratamento farmacológico , Endometriose/patologia , Hidroxibenzoatos/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
J Ovarian Res ; 16(1): 213, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946316

RESUMO

The oocyte cumulus complex is mainly composed of an oocyte, the perivitelline space, zona pellucida and numerous granulosa cells. The cumulus granulosa cells (cGCs) provide a particularly important microenvironment for oocyte development, regulating its growth, maturation and meiosis. In this study, we studied the internal structures and cell-to-cell connections of mouse cGCs using focused ion beam scanning electron microscopy (FIB-SEM). We reconstructed three-dimensional models to display characteristic connections between the oocyte and cGCs, and to illustrate various main organelles in cGCs together with their interaction relationship. A special form of cilium identified in granulosa cell was never reported in previous literature.


Assuntos
Oócitos , Microscopia Eletrônica de Volume , Feminino , Camundongos , Animais , Oócitos/fisiologia , Células da Granulosa/fisiologia , Oogênese , Células do Cúmulo
3.
Front Biosci (Landmark Ed) ; 28(8): 166, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664916

RESUMO

Endometriosis is defined as a disorder in which the glands and stroma of the endometrium grow and shed periodically outside the uterine cavity. Highly prevalent in women of reproductive age, the most common clinical manifestations are chronic pelvic pain and infertility. The pathogenesis of endometriosis may be multifactorial, including factors of anatomy, immunity, inflammation, hormones (estrogen), oxidative stress, genetics, epigenetics, and environment. There are generally three types of endometriotic disease, namely peritoneal, ovarian, and deep infiltration. For the same patient, there may be a single or multiple types concurrently. The different manifestations of these types suggests that they each have their own etiology. Numerous studies have shown that the evasion of endometrial cells from peritoneal immune surveillance helps establish and maintain peritoneal endometriosis, but the specific mechanism is not well understood. Likewise, the molecular mechanisms of endometriosis-related infertility have not been clearly elucidated. This review attempts to identify the role of peritoneal immunity in peritoneal endometriosis and related infertility, especially in the aspects of molecular mechanisms.


Assuntos
Endometriose , Infertilidade , Humanos , Feminino , Epigênese Genética , Epigenômica , Estrogênios
4.
Ther Adv Endocrinol Metab ; 14: 20420188231199359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719789

RESUMO

Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.

5.
Front Endocrinol (Lausanne) ; 13: 927834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832433

RESUMO

A randomized sibling-embryo pilot trial investigated whether two ways of laser-assisted hatching result in different blastulation and clinical outcomes after extended in vitro culture process of highly fragmented day-3 cleavage embryos. From 92 couples, a total of 315 highly fragmented day-3 embryos (the fragmentation >25%) were recruited and randomized into laser-assisted zona thinning (LAT, n=157) and opening (LAO, n=158) groups, and then underwent a blastocyst culture in vitro. The main endpoint measurements including blastocyst formation and grading as well as the clinical pregnancy after blastocyst transfer were obtained during the treatment procedure of in vitro fertilization and embryo transfer, and then analyzed with generalized estimating equation (GEE) and/or time-to blastocyst analysis models. A total of 166 day-3 embryos developed into blastocyst stage (52.70%), of which 97 were viable blastocysts (30.79%), and 42 top-quality ones (13.33%). LAT did not have any inferior or superior to LAO in the endpoints of either total, viable, top-quality or hatched blastocyst formation, with the ORs (95%CI) from GEE model as 0.89 (0.55-1.45), 0.71 (0.42-1.21), 1.12 (0.56-2.25) and 0.68 (0.42-1.12) respectively for LAT treatment. And the time-to-blastocyst analysis showed a similar result. Additionally, no difference in clinical outcomes after blastocyst transfer was found between the two groups. The author concluded that when applying the LAHs during the extended culture of highly fragmented embryos, both LAT and LAO can generate a promising clinical outcome, and the LAT operation be equivalent to the LAO. Future well-designed, multiple-center, larger-sample investigations are required to ascertain above conclusion.


Assuntos
Transferência Embrionária , Irmãos , Técnicas de Cultura Embrionária , Transferência Embrionária/métodos , Feminino , Humanos , Lasers , Projetos Piloto , Gravidez
6.
Front Endocrinol (Lausanne) ; 13: 1013894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704038

RESUMO

Primary ovarian insufficiency (POI) is among the foremost causes of women infertility due to premature partial or total loss of ovarian function. Resistant ovary syndrome (ROS) is a subtype of POI manifested as normal ovarian reserve but insensitive to gonadotropin stimulation. Inactivating variants of follicle-stimulating hormone receptor (FSHR), a class A G-protein coupled receptor, have been associated with POI and are inherited via an autosomal recessive pattern. In this study, we investigated the genetic causes of a primary infertility patient manifested as POI with ROS, and elucidated the structural and functional impact of variants of uncertain significance. Next-generation sequencing (NGS) combined with Sanger sequencing revealed novel compound heterozygous FSHR variants: c.1384G>C/p.Ala462Pro and c.1862C>T/p.Ala621Val, inherited from her father and mother, respectively. The two altered amino acid sequences, localized in the third and seventh transmembrane helix of FSHR, were predicted as deleterious by in silico prediction. In vitro experiments revealed that the p.Ala462Pro variant resulted in barely detectable levels of intracellular signaling both in cAMP-dependent CRE-reporter activity and ERK activation and displayed a severely reduced plasma membrane receptor expression. In contrast, the p.Ala621Val variant resulted in partial loss of receptor activation without disruption of cell surface expression. In conclusion, two unreported inactivating FSHR variants potentially responsible for POI with ROS were first identified. This study expands the current phenotypic and genotypic spectrum of POI.


Assuntos
Infertilidade Feminina , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Espécies Reativas de Oxigênio , Genótipo
7.
Cell Death Discov ; 7(1): 355, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782602

RESUMO

Endometriosis is one of the most common disorders that causes infertility in women. Iron is overloaded in endometriosis peritoneal fluid (PF), with harmful effects on early embryo development. However, the mechanism by which endometriosis peritoneal fluid affects embryonic development remains unclear. Hence, this study investigated the effect of iron overload on mouse embryos and elucidated the molecular mechanism. Iron overload in endometriosis PF disrupted blastocyst formation, decreased GPX4 expression and induced lipid peroxidation, suggesting that iron overload causes embryotoxicity and induces ferroptosis. Moreover, mitochondrial damage occurs in iron overload-treated embryos, presenting as decreased ATP levels, increased ROS levels and MMP hyperpolarization. The cytotoxicity of iron overload is attenuated by the ferroptosis inhibitor Fer-1. Furthermore, Smart-seq analysis revealed that HMOX1 is upregulated in embryo ferroptosis and that HMOX1 suppresses ferroptosis by maintaining mitochondrial function. This study provides new insight into the mechanism of endometriosis infertility and a potential target for future endometriosis infertility treatment efforts.

8.
Reprod Toxicol ; 105: 156-165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481919

RESUMO

We and others have previously shown that abnormal pelvic environment plays an important role in the unexplained infertility of endometriosis. However, whether iron overload caused by ectopic periodic bleeding found in patients with endometriosis participates in endometriosis-associated reproductive failure is unknown. This study aimed to investigate effects of iron at level relevant to pelvic iron overload on the development of preimplantation mouse embryo. Two-cell embryos were collected, and cultured to blastocysts in G1/G2 medium supplemented with iron alone or in combination with iron chelator. The development rates, ATP level, mitochondrial membrane potential (MMP), reactive oxygen species level (ROS), and apoptotic and ferroptotic indices were compared between control and iron treatments across each specific developmental stage. Prolonged exposure to iron remarkably impaired early embryo development in vitro by hampering blastocyst formation (P < 0.001), which could be partly restored by iron chelator (P < 0.001). The arrest of embryo development was linked with iron-initiated mitochondrial dysfunction with reduction of ATP generation and MMP (P < 0.05 and P < 0.001, respectively). Impaired mitochondria altered ROS accumulation post-iron exposure at morula stage and blastocyst stage (P < 0.05). Moreover, Iron-exposed blastocyst stage embryos showed higher apoptotic and ferroptotic rates (P < 0.001 and P < 0.05, respectively). Our results highlight that pathologically relevant level of iron compromises preimplantation mouse embryo development by disrupting mitochondrial function and triggering both apoptosis and ferroptosis, which implicates that excess iron found in peritoneal fluid of women with endometriosis likely participates in endometriosis-associated reproductive failure.


Assuntos
Desenvolvimento Embrionário , Sobrecarga de Ferro , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Embrião de Mamíferos , Feminino , Ferroptose , Sobrecarga de Ferro/metabolismo , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...